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Abstract. Three basically different models of CsN clusters are studied, partly in order to explore
the limitations of each model and partly in order to study general ground-state properties of
the clusters. One model is based on the spherical-jellium model within the density-functional
formalism, another is a semi-empirical tight-binding model obtained by parametrizing band
structures for an infinite crystal, and the third model is a spherical-well model for non-interacting
particles. Particularly stable clusters are found for systems with only completely filled electronic
shells, although this result is somewhat obscured by surface effects for the tight-binding model.
For the density of states as a function ofN the tight-binding model is the one providing the most
accurate information, especially for the features closest to the Fermi level. Only this model gives
the proper description of those in the limitN → ∞. Finally, we examine the electron density
for different clusters and explore how Friedel oscillations occur. In particular the jellium model
predicts very regular density oscillations, which can be ascribed to electron–electron interactions.
We study both the pure clusters and ones with a void at the centre, where the latter represents
a simple model for Cs-covered C60 molecules. The two systems show many similarities—in
particular it is demonstrated that the stable clusters occur with the same spacing1R of the radius
of the system. The cluster sizes range up to values ofN of about 10 000 for the jellium and the
tight-binding models and to over 30 000 for the spherical-well model. In total the study shows that
although many properties are well described by all of the models, it is important to be aware of
their limitations, and it would be desirable to incorporate more experimental information in order
to be able to evaluate the quality of the different models. To this end the ‘magic numbers’ are less
convenient.

1. Introduction

Clusters are intermediates between molecules and solids. Often they consist of only one type
of atom and the numberN of atoms lies typically in the range 10–10 000. Furthermore, they
are often forN larger than some 10s close to spherically symmetric.

Their interesting properties originate partly from the fact that the number of atoms at
the surface relative toN is large and partly from finite-size or quantum-confinement effects.
Obviously, they have been the focus of several experimental and theoretical studies during the
last roughly 15 years (see references [1,2] for detailed reviews).

One of the central questions is how the properties depend onN . Theoretical studies
suffer from the problem that the systems are large without being treatable as infinite and
periodic. Simultaneously, they contain many inequivalent atoms. This makesab initiomethods
prohibitively involved forN larger than∼50. Therefore, current theoretical descriptions are
based on several approximations. First, only the valence electrons are considered. Second,
often the structure is taken as that of the crystalline material.
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When calculating the total energyEtot as a function ofN one may furthermore apply a tight-
binding approximation for the electronic hopping integrals and subsequently approximateEtot

by the sum of the single-particle energies of the occupied orbitals. This amounts to assuming
that electronic effects determine the properties of the clusters. Such approaches have been
undertaken by Mansikka-ahoet al [3, 4] and by Lindsayet al [5] for N up to about 1000. In
the earlier papers [3,5] the simplest Hückel model was applied, but more recently [4] a more
accurate tight-binding model explicitly developed for Na clusters was employed. Here, we
shall report results of such tight-binding studies for clusters with up to more than 10 000 atoms
and we shall apply a tight-binding model that is explicitly developed for the element of interest
to us, Cs.

Another often-applied approximation is the jellium approximation [6–18]. Thereby a true
spherical symmetry can be obtained and the electronic properties can be calculated within the
density-functional formalism of Hohenberg, Kohn, and Sham [19, 20]. As an improvement,
Martinset al [7] and Lerḿeet al [21] included also the effects of the positions of the nuclei in
an averaged way.

It turns out that the single-particle potential felt by the electrons has a simple and partly
universal shape independent of the size of the system. Therefore, simple studies considering
non-interacting particles moving in a given potential have been reported, too [21,23–27]. Since
this potential is approximately a constant inside the cluster for larger systems, the simplest
approximation amounts to assuming that the potential is constant inside the cluster and infinite
outside.

The three approaches are based on different assumptions and it is far from clear that for a
given material they will predict the same properties. Although this is a very important question
when using any of the three models in analysing experimental results, it has not been addressed
previously. It is the purpose of the present paper to present results of a such study. We shall here
concentrate on ground-state properties, although the models are often used also in studying
excitations. Furthermore, deviations from spherical symmetry may occur in real systems but
here we shall only consider clusters that are close to spherically symmetric. Thereby the
comparison between the three models is optimal.

We have used all three approaches for Cs clusters as a prototype. In section 2 we describe
our theoretical methods, i.e., the density-functional jellium model, the tight-binding model,
and the spherical-well model. In section 3 we present our results for pure CsN clusters. A
more complicated system is treated in section 4. This system is essentially a spherical cluster
with a void at the centre and represents the simplest approximation for Cs atoms deposited on
a C60 molecule. Thus, the C60 molecule is responsible for the void. Finally, we conclude in
section 5.

2. Theoretical models

2.1. The jellium model

Within the jellium model we apply the density-functional formalism of Hohenberg, Kohn, and
Sham [19, 20]. Exchange and correlation effects are included via the local approximation
of von Barth and Hedin [28]. Only one valence electron per atom is included and the
jellium background density is assumed spherically symmetric and described by the electron-
gas parameterrs = 5.62 au, i.e., one particle per volume of4π

3 r
3
s . This value ofrs corresponds

to the density in crystalline Cs. The resulting one-dimensional single-particle equations are
solved numerically, whereby both the orbitals, their single-particle energies, and the total
energy are obtained.
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2.2. The tight-binding model

For N not too small the clusters are close to spherically symmetric and can be considered
fragments of the crystalline material. Cs crystallizes in the bcc structure with a lattice constant
a = 11.41 au. Assuming that Cs has only one valence electron per atom we may describe its
electronic properties through the (single-particle) model Hamiltonian

Ĥtb =
∑
i,j

tij ĉ
†
i ĉj (1)

whereĉ†i (ĉi) creates (annihilates) an electron on sitei. tij is the hopping integral that in the
present case only depends on the distance between atomsi andj .

Figure 1. The density of states for crystalline Cs as calculated with the LMTO-ASA method. Only
the 6s valence electrons were included in the calculation, whereas all other electrons were treated
within a frozen-core approximation. The Fermi energyεF is marked by the vertical dashed line.

In order to determinetij we performed density-functional LMTO-ASA [29] calculations
on crystalline Cs with the experimental lattice constant. The resulting density of states is
shown in figure 1 and is seen to resemble that of a free-electron gas up to about 0.5 eV below
the Fermi levelεF , but with some deviations from the free-electron behaviour aroundεF .

The band energies of the occupied bands at a few high-symmetry points were subsequently
fitted with those of the Hamiltonian of equation (1), which resulted intij = −0.146 eV,
−0.115 eV, and 0.022 eV for first-, second-, and third-nearest-neighbour interactions,
respectively. For our purposes the on-site termstii are uninteresting and therefore ignored (see,
however, section 3.1). Further interactions were not included which is justified considering
the smallness of the third-nearest-neighbour hopping integrals.

Also Mansikka-ahoet al [4] applied a tight-binding model, but for Na clusters. They,
however, assumed that the band structures of the infinite crystal are free-electron-like which
may not be exactly the case.

For the clusters we use the Hamiltonian of equation (1) with the only difference being
thati andj are allowed to run only over the sites within a pre-defined distanceR from a given
central atom. This corresponds to generating clusters of different sizes by subsequently adding
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more and more ‘atomic’ shells. Here, we have considered clusters with up to 161 atomic shells,
i.e. up toN = 11 017.

From the Schr̈odinger single-particle equation

Ĥtbψi = εiψi (2)

we define the electronic energy

Etb =
∑
i

niεi (3)

with ni being the occupancies.
Etb contains a term that is proportional to the size of the system as well as one that is

proportional to the size of the surface. By studying the excess energy

Eexc= Etb− aR3− bR2 (4)

we can therefore focus on those electronic effects that are beyond those of volume and surface
effects.a andb in equation (4) are obtained through a least-squares fit ofEtb for a larger set
of different values ofR.

2.3. The spherical-well model

It is useful to consider also the simple model of non-interacting particles confined to the interior
of a sphere of radiusR. For this system the single-particle energiesεnl are defined through

jl

(√
2m

h̄2 εnlR

)
= 0 (5)

with jl being thelth spherical Bessel function of the first kind.
Also in this case we define a system of a certain sizeR containingN particles. Here,

N
4π

3
r3
s =

4π

3
R3. (6)

An electronic energy and an excess energy such as those defined in equations (3) and (4) will
also be considered in this case.

This model is equivalent to the infinite-barrier model of Ekardtet al [22].

3. Results

3.1. Relative stability

The total energy per atom of the jellium calculations (figure 2(a)) for 1 6 N 6 310 shows
the well-known local minima (see, e.g., references [1,2]) that can be ascribed to the filling of
single or groups of energetically nearly degenerate electronic shells (cf. figure 3). In figure 3
we observe that the orbital energy as a function ofN for a given orbital is not a monotonic
function but shows some small discontinuities. These occur mainly at the positions where also
the Fermi level makes a jump and indicate that all electrons feel the effects of completing the
(n, l) shells. Moreover, for not too smallN , the orbitals tend to group together with the result
that the local minima in figure 2(a) occur not every time a single(n, l) shell is filled but rather
when such a group is filled.

In figure 2(a) it is clear that the magic clusters appear at regularR-intervals, as has been
observed by others (see, e.g., references [2,27]). For later purpose we show in table 1 the sizes
of the magic clusters together with those(n, l) shells that are filled for a given size.
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Figure 2. (a) The total energy per atom for the jellium
model as a function of the radiusR of the cluster. (b) As
(a) but for the tight-binding model. (c) As (a) but for the
spherical-well model.

Figure 3. The single-particle eigenvalues for the jell-
ium model as functions ofN . The thicker line shows the
energy of the highest occupied orbital.

For the spherical-well model one obtains the relative total energy shown in figure 2(c).
Comparing with figure 2(a) we observe local energy minima for exactly the same cluster sizes.
However, the local minima are more pronounced in the density-functional calculations than in
the spherical-well model. Since the main difference of the two systems is the electron–electron
interactions, we will ascribe the differences between figures 2(a) and 2(c) to those.

The spherical-well model has one important property. Independently of the size of the
well (i.e., ofR) the eigenvalues appear in the same order. For this model, the eigenvalues as
functions ofN are accordingly proportional toN−2/3 (cf. equations (5) and (6)). This behaviour
is recovered only approximately in figure 3, supporting the hypothesis that the irregularities in
figure 3 are due to electron–electron interactions.

As is well known, the positions of the local minima in figure 2(c) can be explained with
the help of the theory of Balian and Bloch [30] according to which (groups of) closed shells
for a spherical system appear with regular intervals of

1R = 0.603rs (7)
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Table 1. The valuesN for the clusters where the jellium calculations predict closed electronic
shells and, equivalently, local minima in the total energy per atom. For a givenN in the table all
orbitals with the(n, l) up to and including the values listed are completely filled. In contrast to the
case for atomic physics,n−1 gives the number of radial nodes, and not the total number of nodes.
In some cases more(n, l) shells are nearly degenerate and essentially filled simultaneously. Also
given in the table are the radii of the closed-shell clusters.

N (n, l) R (au)

2 (1, 0) 7.08

8 (1, 1) 11.24

18 (1, 2) 14.73

20 (2, 0) 15.26

34 (1, 3) 18.21

58 (2, 1) (1, 4) 21.75

92 (2, 2) (1, 5) (3, 0) 25.37

132 (2, 3) (1, 6) 28.62

138 (3, 1) 29.04

186 (1, 7) (2, 4) 32.08

254 (3, 2) (1, 8) (4, 0) (2, 5) 35.59

338 (3, 3) (1, 9) (4, 1) (2, 6) 39.15

(i.e.,1R = 3.39 au for Cs). This agrees very well with the results of figure 2(c). Thus, the
minima of figures 2(a) and 2(c) are a consequence of the geometry of the system.

Figure 2(b) shows the total energy per atom for the tight-binding model plotted as a
function of the size of the cluster. As in figures 2(a) and 2(c) the curve appears to have local
minima for regularR-intervals. Here, however, the fact that the size of the cluster cannot be
increased continuously but only by complete atomic shells makes the curve of figure 2(b) less
smooth than those of figures 2(a) and 2(c). But with some goodwill we may observe local
minima forR = 19.8, 25.5, 29.7, 34.3, and 37.9 au. TheR-spacing for the particularly stable
clusters is hence markedly larger than given by equation (7), which points to major differences
between the different models. These shall now be explored further.

The similarity of the results of figures 2(a) and 2(c) allows us to focus solely on the
spherical-well model when studying the relative stability for larger clusters. Thus, in order
to study significantly larger clusters we shall only consider the computationally simpler tight-
binding and spherical-well models. In figure 4(a) we show the excess energies for the tight-
binding model for clusters with up to 11 017 atoms (including the 161th atomic shell), and in
figure 5 the equivalent results for the spherical-well model with up to 31 628 atoms (including
462 electronic(n, l) shells up to(n, l) = (1, 54)).

The oscillations in the excess energy in figure 5 are superposed on one with a longer
wavelength, so that they almost vanish forR ' 50 and 85 au. These are the well-known
supershells [27,31], whose occurrence can be explained with the theory of eigenvalue-density
oscillations developed by Balian and Bloch [30]. On the other hand, the fact that the curve of
figure 5 has a local maximum at aroundR ' 50 au and a local minimum at around 150 au is
a non-physical consequence of the fitting procedure.

In figure 4 we also show a representation of the spherically symmetric part of the
background density of the nuclei and the core electrons. This is obtained by assuming that
the density of each nucleus plus the corresponding core can be described by a Gaussian(
α/π

)3/2
e−α(Er− ER)

2
centred at the site of the nucleus. We useα = 0.2 au, corresponding

to a full width at half-maximum of 3.72 au.
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Figure 4. (a) The excess energy for the tight-binding
model. (b) The charge density of the underlying lattice
broadened with Gaussians of full width at half-maximum
3.72 au.

Figure 5. As figure 4(a), but for the spherical-well model.

The excess energy of figure 4(a) shows well-pronounced minima that are evenly spaced
in R consistently with the spacing of figure 2(b), i.e., with1R ' 8.06 au. By comparing
with the smeared-out background density of figure 4(b) we see that the minima in figure 4(a)
appear for those values ofR for which this background density has local minima. This means
that for those clusters where the excess energy is lowest the number of atoms in the vicinity
of the surface is low. Thus, the oscillations in figure 4(a) are essentially due to surface atoms.
Since the number of surface atoms is a property of the crystal structure but independent of the
lattice constant, the spacing in1R for the local minima of the excess energy will scale with
rs ; the present tight-binding model predicts stable clusters for

1R ' 1.43rs . (8)

Also for the Ḧuckel and tight-binding models on a truncated fcc crystal, Mansikka-ahoet al [3]
found a strong dependence on surface effects.

In order to be able to study those effects that are not due to the surface we observe that
the definition of equation (4) is inappropriate: the number of surface atoms does not simply
scale withR2, as is evident in figure 4(b), and it is important to consider the precise number
of surface atoms explicitly. We therefore define

Ẽexc= Etb− ãN − b̃Ns (9)

whereNs is the number of surface atoms. For a given cluster withNS atomic shells we have let
Ns be either the number of atoms of theNS th atomic shell or that of theNS th and(NS − 1)th
atomic shells. Independently of the precise definition used, results such as those of figure 6
are obtained.
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Figure 6. The excess energy of equation (9) for the tight-
binding model with the number of surface atomsNs being
the number of atoms in the outermost atomic shell.

Figure 7. The excess energy of equation (4) for the tight-
binding model when including non-zero on-site energies
for the surface atoms.

In figure 6 an oscillatory behaviour can be recognized, and on comparing with figure 4(b)
we see that theR-spacing of the local minima in figure 6 is smaller than that of figure 4(b),
i.e., about 4 au. Taking all of the approximations into account we find that this agrees reasonably
well with the estimate given above (equation (7)) for electronic shells in the spherical well.

A more realistic approach is to treat the surface atoms differently from those of the inner
parts of the cluster. Thus, dangling bonds that furthermore might be saturated by surfactants
as well as surface reconstructions are likely to cause these orbitals to have different energies
from those of the bulk atoms. Accordingly, in the model of section 2.2 the on-site energiestii
for atoms at the surface will be different to those for the others. Ultimately this may remove
the surface orbitals from the energy region closest to the Fermi level.

In order to study this proposal we have considered the model of section 2.2 but withtii
arbitrarily set equal to−0.2 eV only for the atoms of theNS th atomic shell. Figure 7 shows
the results of these calculations. From comparing with figure 4(b) it is clear that the excess
energy has increased by about one order of magnitude, and one may speculate that the choice
above of−0.2 eV is too large. Irrespective of this it is clear that the excess energy of figure 7
has local minima with a periodicity very similar to that observed in figure 6. In total, these
results show that the tight-binding model is inappropriate when studying magic numbers, at
least when not taking care of the problems related to describing the surface.

3.2. Density of states

In figure 8 we show the DOS for various larger clusters as obtained with the jellium model, and
in figure 9 we show that of some larger clusters for the tight-binding model. Finally, figure 10
shows the DOS for the spherical-well model whose general shape is independent of the size
of the system. We have therefore not included any Fermi level in figure 10.

The supershells are clearly visible in the results obtained using the spherical-well model
(figures 10 and 5), but they only gradually develop for larger clusters within the jellium model.
On the other hand, for the largest cluster in figure 8 the energetically lowest supershell gets
so smeared out that it hardly is recognizable and the DOS resembles in that energy region
mainly that of a free-electron gas, as it should. But also for these largest clusters, the DOS—in
particular around the Fermi level—shows large differences compared to that of the crystalline
material shown in figure 1.

In contrast to this, the DOS of the tight-binding calculations forN larger than∼2000
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Figure 8. The density of states for clusters with (a)N =
400, (b)N = 2000, and (c)N = 9997 atoms as obtained
with the jellium model. The vertical dashed lines mark
the Fermi level. All energy levels have been broadened
by Gaussians of full width at half-maximum 0.037 eV.

Figure 9. The density of states for clusters with (a)N =
531, (b) N = 1989, and (c) N = 11 017 atoms as
obtained with the tight-binding model. The vertical
dashed lines mark the Fermi level. All energy levels
have been broadened by Gaussians of full width at half-
maximum 0.037 eV.

clearly resembles that of the crystalline material, at least to slightly (∼0.2 eV) above the Fermi
level. Thus, both the free-electron-like behaviour at the lowest energies and the local maximum
just above the Fermi level are readily recovered for those. This was also found in the simpler
Hückel studies for smaller clusters by Lindsayet al [5]

For clusters of comparable size the width of the occupied part of the DOS is slightly larger
for the tight-binding model than for the jellium model. This may, however, partly be due to
the surface states that according to the discussion above appear close to the Fermi level for the
tight-binding model and that may occur at slightly higher energies than for the real system.

The results for the jellium model show that for up to about the2
3N lowest levels the results

are to a good approximation independent of the cluster size and compare well with those of the
spherical-well model. The electrons occupying these levels are accordingly so well localized
to the interior of the cluster that they experience a potential that is roughly constant and strongly
repulsive on the boundaries.

In contrast to the jellium results, the tight-binding studies give that for a given cluster with
N sites only the positions of the local minima in the DOS for up to aboutN/2 electrons can be
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Figure 10. The density of states for the spherical-
well model. All energy levels have been broadened by
Gaussians of full width at half-maximum 0.037 energy
units. Since different clusters only differ by different
energy scales, we have not specified the latter; neither
have we specified the Fermi level.

Figure 11. The electron density and background density
from the jellium calculations for systems with (a) 400,
(b) 2000, and (c) 9997 atoms. The step-like function
corresponds to the background density.

considered converged to the values of the jellium and the spherical-well models. This agrees
with the Hückel and tight-binding results of Mansikka-ahoet al [3,4]. They found in addition
a relatively strong dependence of the position of the local minima on the truncation (i.e., on
the shape of the surface), which once again supports the conclusion that surface effects are
important. It turns out thatN/2 electrons occupy levels up to about 0.5 eV below the Fermi
level, which gives an estimate for the energy scale over which surface effects are important.

In the preceding subsection we stressed the importance of the surface atoms and also
presented a simple model in which the surface atoms were removed from the vicinity of
the Fermi level. Analysing the DOS obtained with this model gives conclusions essentially
unchanged from those above.

3.3. Density oscillations

In figure 11 we show some representative examples of the electron density together with the
jellium background density from the jellium calculations. The electron density shows a damped



Electronic properties of CsN clusters 11

Figure 12. As figure 11, but for the spherical-well model
and without the background density. (c) corresponds to
10 000 atoms.

Figure 13. Number of electrons per atom as a function
of distance from the centre as obtained with the tight-
binding model. The panels correspond to clusters with
(a) 411, (b) 1989, and (c) 9985 atoms.

oscillatory behaviour with the largest amplitude closest to the surface. For the larger clusters
the oscillations are more strongly damped, whereas for the smaller ones (less thanN ∼ 1000
atoms) they prevail throughout the complete system.

In figure 12 we show the same densities as in figure 11 but for the spherical-well model.
Also these show an oscillatory behaviour and a convergence towards the constant value for
the infinite system, but the oscillations are significant less regular (in particular for the smaller
systems), and the maximum does not always occur close to the surface. The main difference
between the two models is the electron–electron interactions that are present in the jellium
model but absent in the spherical-well model.

Within the jellium model we have assumed that the electrons move in the field of a
homogeneous background density and that they are essentially confined to a spherical part of
space. Another way of confining the electrons is to introduce a repulsive spherical potential
shell in an infinite, homogeneous jellium. It is well known (see, e.g., reference [32]) that a
potential of the formV0δ(Er) placed in an otherwise infinite, homogeneous jellium produces
an oscillatory electron density superposed on the otherwise constant density. The spherical
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potential shell can be interpreted as a superposition of point potentials, resulting in the following
oscillatory part of the density [33]:

δρ(Er) = −2V0k
2
F

m

h2

R0

r

{
f [2kF (R0 − r)] − f [2kF (R0 + r)]

}
. (10)

Here,

kF =
(

9π

4

)1/3 1

rs
' 1.92

rs
(11)

is the Fermi momentum andR0 is the radius of the potential sphere.R0 is supposed to be
larger thanR since the electron density of the jellium model for the clusters has a tail sticking
out of the jellium. The functionf (x) is given by

f (x) = sinx

x2
− cosx

x
+
π

2
− Si(x) (12)

with Si being the sine integral.f is an oscillating and decaying function. Thus, the electron
density oscillates with a wavelength of

λF = π

kF
' 1.636rs . (13)

For Cs,λF = 9.19 au.
One may speculate on whether the density oscillations have any influence on the stability

of the clusters. The twof -functions in equation (12) interfere constructively wheneverR is
increased byλF /2, i.e. by

1R ' 0.818rs (14)

which equals 4.60 au for the Cs clusters. This1R spacing, however, does not coincide with
those observed in jellium studies of the stability of clusters and we therefore conclude that
these density oscillations are only at most of secondary importance for the stability of the
clusters.

For the tight-binding model each orbital is a linear combination of all atomic basis
functions,

ψi =
∑
ER
ci, ERφ ER. (15)

Subsequently, we define

ρ(R) = 1

N(R)

∑
i

∑
ER′
δR,R′ |ci, ER′ |2 (16)

where theER′-summation is only over those sites that are at exactly the distanceR from the
centre, andN(R) is their number.

This density is shown in figure 13 for approximately the same cluster sizes as those of
figure 11 for the jellium model and of figure 12 for the spherical-well model. The results
show that the density has a local maximum close to the surface independently of the size
of the system and which resembles what was found in figures 11 and 12 for the other two
models. On the other hand, Friedel oscillations such as those of figure 11 are only marginally
resolved, so the true electron density will be dominated by the underlying lattice structure (since
ρ(R) of equation (16) will be modulated by the background density of figure 4(b)). At this
point it should be added that originally the Friedel oscillations were found when considering
the response of an infinite, homogeneous electron gas to a point perturbation. Therefore,
when using the infinite system as a starting point, it is important that the model includes a
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proper description of screening which for the present models is only the case for the jellium
model. However, when including the perturbation (either the point potential or the spherical
confinement) right from the start, all models should, in the ideal case, give the same results.

The differences between figures 11, 12, and 13 show that without support from other
sources (experiment or more exact theoretical studies) none of the methods can be considered
reliable in describing this property. It should be stressed here that the spherical-well model is
clearly a simplified model compared with the other two, but as regards the other two there is
no reason to consider one superior to the other. That these two predict different behaviours
must therefore be considered disturbing.

In each of the figures 11, 12, and 13 it is seen that the electron density at the centre of the
cluster oscillates with cluster size. However, the oscillations of the three models do not follow
the same pattern.

Figure 14. The electron density at the centre of the cluster as a
function of the number of atomsN in the cluster as calculated with
the jellium model.

For the large jellium systems we may use equations (10) and (12) to calculate the density
at the centre [33]:

δρ(0) = −2V0kF
m

h2

1

R0

[
sin(2kFR0)

2kFR0
− cos(2kFR0)

]
∼ j1(2kFR0). (17)

As a function of cluster size, this density shows oscillations with local maxima separated by
the wavelength of equation (13). The jellium calculations for the smaller clusters (up to 310
atoms) predict, however, a somewhat different behaviour (figure 14). Thus, the density at the
centre is, according to these, roughly piecewise constant. It increases whenever an s level is
being filled in agreement with the results of the spherical-well model, but when the cluster is
subsequently enlarged without new s levels being filled, the density does not decrease until
a certain size is reached when a new s level gets filled. This means that the reduction in
this density that should accompany the increased size is compensated by other effects. It is
moreover remarkable that those cluster sizes for which the density at the centre drops are those
for which p levels are being filled; cf. table 1. (Note that in table 1 more shells are filled
roughly simultaneously for the larger systems. However, they are filled in the order given in
the table, so, e.g., for the systems withN between 186 and 254 thel = 0 shell is filled forN
roughly between 230 and 232). The reason for the reduction in the density at the centre when
a p shell is being filled may be the following. After the s orbitals, the p orbitals are those with
the largest density closest to the centre. Therefore, when the p shells are being filled, the s
electrons are being expelled from the central region, giving a reduction in the electron density
at the centre.
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4. The clusters with a void

Recently, it has been shown experimentally [33,34] that it is possible to deposit layers of metal
atoms on the exterior of a C60 molecule. Although there will be chemical interactions between
the buckyball and the metal atoms one may to a first approximation assume that the resulting
system can be considered a metal cluster with a void at the centre. Thus, for those metals
for which the magic numbers of the pure clusters (i.e., without a void) are determined by the
closing of electronic shells one may suggest that the same is the case for the clusters with a
void. Cs belongs to this group. For Cs one further aspect is important: the electronic hopping
integrals (cf. section 2.2) are more than one order of magnitude smaller than those for the
frontier orbitals of the C60 molecule. And since the C60 molecule has a gap around the Fermi
level, the frontier orbitals of the Cs-covered buckyball are largely localized to the Cs atoms,
so the closing of electronic shells is mainly dictated by properties of the metal.

A further argument for considering this simple model comes from an earlier study [33]
where it was shown that the magic numbers of the Cs-covered C60 could be reasonably well
described by using a jellium model with a void at the centre. In that study it was important to
take into account that six electrons were transferred from the metal to the C60 molecule.

In the present study we shall focus on the changes in the electronic and stability properties
of the Cs clusters when they have a void at the centre. As a possible realization of these systems
we shall have metal-covered C60 in mind, but we shall not attempt here to make any further
comparison with the experimental results. We shall therefore not study the effects of removing
a number of electrons from the metal but assume that the cluster with the void has as many
electrons as atoms.

Table 2. As table 1, but for the jellium with a void at the centre.R is the outer radius of the jellium
calculated from equation (18).

N (n, l) R (au)

2 (1, 0) 9.90
8 (1, 1) 12.67

18 (1, 2) 15.62
32 (1, 3) 18.46
52 (1, 4) (2, 0) 21.43
58 (2, 1) 22.18
90 (1, 5) (2, 2) 25.50

130 (1, 6) (2, 3) 28.72
186 (3, 0) (1, 7) (2, 4) (3, 1) 32.28
252 (3, 2) (1, 8) (2, 5) 35.66
332 (3, 3) (1, 9) (2, 6) (4, 0) 39.05
428 (1, 10) (3, 4) (2, 7) (4, 1) 42.47

Within the jellium model the void is assumed to have a radius ofRC = 8.50 au, so the
outer radius of the jellium becomes

R = (Nr3
s +R3

C

)1/3
. (18)

In table 2 we show the properties of the magic clusters of this model, analogously to table 1
for the jellium without a void. From comparing with table 1 it is obvious that the two systems
show only small differences and these are largest for the smallest clusters, which should not
surprise. For the larger clusters, the magic numbers seem to be slightly smaller for the cluster
with a void than for that without. It is interesting to notice that thereby theR-values of the
closed-shell clusters of the two systems become more similar, which is only possible by having
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a slightly different ordering of the(n, l) shells. But the similarity of the two systems shows
also that the (spherical) symmetry is the overall driving factor dictating the magic numbers.

The presence of the void means that it becomes energetically unfavourable for the electrons
to be in that region. Within the tight-binding model we may accordingly use two different
approaches in modelling the presence of the void: either simply removing the central atoms or
giving these on-site energies well above those of the other atoms. In the latter case one should
also reduce the total number of electrons. Here, we have chosen to use the second approach,
but on choosing the values of these on-site energies equal to 10 eV the two approaches become
essentially identical. Furthermore, from our results of section 3.1 we learned that surface
effects may obscure our results, so therefore we included extra on-site energies for the surface
atoms (equal to−0.2 eV as in figure 7). The void was supposed to occupy the region of the
central atom and the first atomic shell (in total nine atoms).

Figure 15. As figure 7, but for the system with a void.

In figure 15 we show the results for clusters of up to about 5000 atoms equivalent to those
of figure 7 for the pure system without a void. Comparing the two systems we observe only
very small differences. This result is less trivial than it at a first sight may appear, since for a
givenR the number of electrons is different (by 9), whereas the number of atoms is unchanged.
The largest differences are found for the systems withR up to about 25 au, in agreement with
the findings for the jellium model.

We shall use the spherical-well model in analysing these systems. The single-particle
energies are here obtained by replacing equation (6) by the two equations

c
j

nljl

(√
2m

h̄2 εnlRC

)
+ cynlyl

(√
2m

h̄2 εnlRC

)
= 0

c
j

nljl

(√
2m

h̄2 εnlR

)
+ cynlyl

(√
2m

h̄2 εnlR

)
= 0

(19)

whereyl is thelth spherical Bessel function of the second kind, and whereR is obtained from
equation (18).

For l = 0 equation (19) reduces to

εn0 = n2h̄2π2

2m(R − RC)2 (20)

which is the same expression as that for the spherical well without the void at the centre, except
that for the latterRC has to be replaced by 0. This explains why the energy spacing between
the orbitals withl = 0 is much larger for the system of this section than for that without the
void at the centre. Therefore, with the void some of the(n, l) shells withn = 1 but higherl
become filled before the(2, 0) shell unlike in the model without the void. This confinement
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effect explains the main differences between the results for the system with the void and those
for the system without the void.

The present spherical-well model possesses one further difference from that of the previous
section. In the latter case the(n, l) shells were ordered in a universal order independent of
N , and the onlyN -dependence was through a rescaling of the energies. But with the void the
(n, l) shells change their relative order as a function ofN .

Figure 16. The energy per atom for the spherical-well
model as a function of the radius of the system. The full
curve corresponds to the system with a void at the centre
and the dashed one to that without a void. Systems with
up to 500 atoms are included.

Figure 17. As figure 11(a), but for a system with a void
at the centre.

In figure 16 we show the energy per electron for the present spherical-well model as a
function of the radiusR of equation (18) forRC = 8.5 au for up toN = 500 atoms. For the
sake of comparison we also show the similar results for the system without the void. We see
first of all that the radial confinement for the system with the void leads to a higher energy
than that for the system without the void (cf., the discussion above), but also that for the larger
systems the two energies approach each other, as expected. The results obtained using the
spherical-well model of figure 16 differ only slightly from those of the jellium calculations
(table 2).

We may for the system with a void, equivalently to section 3.3, model the confinement
of the electrons as being due to two concentric spherical repulsive potential shells, of which
one is equivalent to the one of section 3.3 and the other keeps the electrons outside the region
of the void. However, just as for the former model we will allow the electrons to have a tail
sticking out of the cluster jellium region, so the radius of the inner sphere is supposed to be
Rc < RC just asR0 > R. This leads to an oscillating part of the electron density equal to [33]

δρ(Er) = −2V0k
2
F

m

h2

Rc

r

{
f [2kF (r − Rc)] − f [2kF (r +Rc)]

}
−2V0k

2
F

m

h2

R0

r

{
f [2kF (R0 − r)] − f [2kF (R0 + r)]

}
(21)

with f (x) given by equation (12). The second term is the same as in equation (10) and is due
to the outer confining potential, whereas the first term is due to the inner confining potential.

In figure 17 we show one example of the electron density from the jellium calculations for
a system withN = 400 atoms. Comparing figures 11(a) and 17 we see that the two outermost
maxima inρ(r) in figure 17 are as those in figure 11(a) although slightly displaced, whereas
the third maximum does not have a counterpart in figure 11(a) at that position. This last one is
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obviously caused by the inner potential shell and at that position the first term in equation (21)
dominates strongly over the second one.

5. Conclusions

In the present work we have applied three different models for studying the ground-state
properties of CsN clusters. We have in particular focused on similarities of and differences
between the predictions of the three models and thereby identified properties that are model
dependent and where experimental studies can be useful in evaluating the quality of the different
models or, alternatively, where the models can be applied only with caution in explaining the
experimental results. We have also been able to identify different length scales that are relevant
for the magic numbers, surface effects, and Friedel oscillations.

We found that the spherical symmetry was the overall driving factor producing the closed
shells. Thus, the magic numbers as defined through equation (7) are found for all three
models. When introducing a void at the centre, equation (7) remained valid, which could only
be achieved by slightly rearranging the order in which the(n, l) shells were filled. However,
for the tight-binding model we found that surface effects could obscure the results. These led
to possible extra features as given by equation (8). But it is not unlikely that the surface atoms
have to be treated differently from the other atoms, and by assuming this to be the case we
could recover the stability oscillations as given by equation (7).

The densities of states for the lowest parts of the occupied orbitals were very similar for
all three models and resembled that of a free-electron gas for not too small systems. However,
the densities of states around the Fermi level showed differences, where only the tight-binding
model could be made to converge (as a function ofN → ∞) to that of the infinite crystal.
Therefore, neither the spherical-well model nor the jellium model appears to be appropriate
when studying low-energy single-particle excitations.

All three models showed clear indications of the occurrence of supershells. The models
differed, however, in the predictions of where the nodes of these should occur. This is
understandable if one notices that these are very sensitive to surface effects that are clearly
described differently in the three models.

The fact that the electrons feel each other’s presence could hardly be noticed in the relative
stability of the clusters. It could, however, be seen in the electron density of the individual
clusters. Here, the electron density of the jellium model showed a much more regular behaviour
with well-developed Friedel oscillations than was the case for the other models. Furthermore,
for the pure clusters without a void the densities and potentials at the centre were particularly
simple to calculate, and they were markedly different for the jellium model than what would
be obtained with the spherical-well model. In particular we mention the surprising finding
from the jellium model that the electron density at the centre is roughly piecewise constant
as a function ofN and only goes up when s shells are being filled or down when p shells are
being filled. We argued that the behaviour of the s and p orbitals closest to the centre could
explain these findings at least partly.

In total our study has shown that the sizes of the particularly stable clusters are described
equivalently by all three models, as long as care is taken in the treatment of surface atoms
within the tight-binding model. Therefore, studies of the magic numbers cannot be used
in discriminating between the different models. Moreover, for the densities of states of the
occupied orbitals of the CsN clusters the three models also yield similar results. However,
when looking at the finer details of these, in particular around the Fermi level, differences
are found. Therefore, one has to be well aware of the limitations and possibilities of the
three models when applying them for interpreting low-energy excitations or optical properties.
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Furthermore, the electron densities of equivalent clusters were markedly differently described
by the three models. Therefore, more detailed experimental studies on size-selected clusters
would be very useful in estimating the quality of the different models.

Finally, surprisingly similar results were obtained independently of whether or not the
systems contained a void at the centre. In particular, the magic numbers and the electron
densities were described by the same length scales for the two types of system.
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[25] Lermé J, Bordas Ch, Pellarin M, Baguenard B, Vialle J L and Broyer M 1993Phys. Rev.B 489028
[26] Catara F, Chomaz Ph and Van Giai N 1995Z. Phys.D 33219
[27] Nishioka H, Hansen K and Mottelson B R 1990Phys. Rev.B 429377
[28] von Barth U and Hedin L 1972J. Phys. C: Solid State Phys.5 1629
[29] Andersen O K 1975Phys. Rev.B 123060
[30] Balian R and Bloch C 1972Ann. Phys., NY6976
[31] Pedersen J, Bjørnholm S, Borggren J, Hansen K, Martin T P and Rasmussen H D 1991Nature353733
[32] Ashcroft N W and Mermin N D 1976Solid State Physics(Philadelphia, PA: Saunders College)
[33] Springborg M, Satpathy S, Malinowski N, Zimmermann U and Martin T P 1996Phys. Rev. Lett.771127
[34] Martin T P, Malinowski N, Zimmermann U, N̈aher U and Schaber H 1993J. Chem. Phys.994210


